Ex-vivo models of the Retinal Pigment Epithelium (RPE) in long-term culture faithfully recapitulate key structural and physiological features of native RPE

نویسندگان

  • Savannah A. Lynn
  • Gareth Ward
  • Eloise Keeling
  • Jenny A. Scott
  • Angela J. Cree
  • David A. Johnston
  • Anton Page
  • Enrique Cuan-Urquizo
  • Atul Bhaskar
  • Martin C. Grossel
  • David A. Tumbarello
  • Tracey A. Newman
  • Andrew J. Lotery
  • J. Arjuna Ratnayaka
چکیده

The Retinal Pigment Epithelium (RPE) forms the primary site of pathology in several blinding retinopathies. RPE cultures are being continuously refined so that dynamic disease processes in this important monolayer can be faithfully studied outside the eye over longer periods. The RPE substrate, which mimics the supportive Bruch's membrane (BrM), plays a key role in determining how well in-vitro cultures recapitulate native RPE cells. Here, we evaluate how two different types of BrM substrates; (1) a commercially-available polyester transwell membrane, and (2) a novel electrospun scaffold developed in our laboratory, could support the generation of realistic RPE tissues in culture. Our findings reveal that both substrates were capable of supporting long-lasting RPE monolayers with structural and functional specialisations of in-situ RPE cells. These cultures were used to study autofluorescence and barrier formation, as well as activities such as outer-segment internalisation/trafficking and directional secretion of key proteins; the impairment of which underlies retinal disease. Hence, both substrates fulfilled important criteria for generating authentic in-vitro cultures and act as powerful tools to study RPE pathophysiology. However, RPE grown on electrospun scaffolds may be better suited to studying complex RPE-BrM interactions such as the formation of drusen-like deposits associated with early retinal disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space

Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...

متن کامل

In Pursuit of Authenticity: Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for Clinical Applications

: Induced pluripotent stem cells (iPSCs) can be efficiently differentiated into retinal pigment epithelium (RPE), offering the possibility of autologous cell replacement therapy for retinal degeneration stemming from RPE loss. The generation and maintenance of epithelial apical-basolateral polarity is fundamental for iPSC-derived RPE (iPSC-RPE) to recapitulate native RPE structure and function....

متن کامل

Impairing autophagy in retinal pigment epithelium leads to inflammasome activation and enhanced macrophage-mediated angiogenesis

Age-related decreases in autophagy contribute to the progression of age-related macular degeneration (AMD). We have now studied the interaction between autophagy impaired in retinal pigment epithelium (RPE) and the responses of macrophages. We find that dying RPE cells can activate the macrophage inflammasome and promote angiogenesis. In vitro, inhibiting rotenone-induced autophagy in RPE cells...

متن کامل

Experimental Models for Study of Retinal Pigment Epithelial Physiology and Pathophysiology

We have developed a cell culture procedure that can produce large quantities of confluent monolayers of primary human fetal retinal pigment epithelium (hfRPE) cultures with morphological, physiological and genetic characteristics of native human RPE. These hfRPE cell cultures exhibit heavy pigmentation, and electron microscopy show extensive apical membrane microvilli. The junctional complexes ...

متن کامل

Pigment Epithelium-Derived Factor Secreted from Retinal Pigment Epithelium Facilitates Apoptotic Cell Death of iPSC

We show that pigment epithelium-derived factor (PEDF), which is secreted from primary or iPSC-derived retinal pigment epithelium (RPE), dramatically inhibits the growth of iPSCs. PEDF is detected abundantly in culture supernatants of primary or iPSC-derived RPE. Apoptotic cell death is induced in iPSC when co-cultured with RPE, a process that is significantly blocked by addition of antibody aga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2017